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Abstract
We propose a scheme for implementing quantum algorithms with resonant
interactions. Our scheme only requires resonant interactions between two
atoms and a cavity mode, which is simple and feasible. Moreover, the
implementation would be an important step towards the fabrication of quantum
computers in cavity QED system.

PACS numbers: 03.67.Lx, 03.65.Ud

Construction of quantum computers is an enormously appealing task because of quantum
computational potential to perform superfast quantum algorithms. Two classes of quantum
logarithms illustrate the great theoretical promise of quantum computers. One is based on
Shor’s Fourier transformation including quantum factoring [1], Deutsh–Jozsa logarithm [2]
and so on, which are all exponential speedup compared with the classical algorithms. The
other is based on Grover’s quantum search [3], which is quadratic speedup compared with
the classical ones. The Grover search algorithm is very important because many techniques
based on the search algorithm are universally used in our lives. The Grover search algorithm
is efficient to look for one item in an unsorted database of size N ≡ 2n [3, 4]. Classically, in
order to achieve the task, one needs O(N) queries. However, one needs O(

√
N) queries by the

Grover search algorithm. Furthermore, the efficiency of the algorithm has been manipulated
experimentally in few-qubit cases via nuclear magnetic resonance (NMR) [5, 6] and optics
[7, 8].

Here, we first review the general Grover search algorithm. The circuit diagram of the
Grover search algorithm with n data qubits and one auxiliary working qubit, which can be
used to search one item from 2n items, is shown in figure 1. The process can be concluded as
the following seven steps.

(i) Prepare the n + 1 qubits, which are in |0〉⊗n|1〉n+1.
(ii) Perform the n + 1 Hadamard transformations on the n + 1 qubits.

(iii) Apply the oracle. The auxiliary working qubit can be omitted after the step.

1751-8113/07/040765+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 765

http://dx.doi.org/10.1088/1751-8113/40/4/012
mailto:zlcao@ahu.edu.cn
mailto:pingdong@ahu.edu.cn
http://stacks.iop.org/JPhysA/40/765


766 Z-L Cao and P Dong

Figure 1. The circuit diagram for the Grover search algorithm. H⊗n denotes n Hadamard
transformations on the n data qubits. An auxiliary working has been omitted. If x is the one to be
searched, f (x) = 1, otherwise, f (x) = 0.

(iv) Perform the n Hadamard transformations on the n data qubits.
(v) Apply a phase shift to the data qubits except |0〉⊗n, which can be described by the unitary

operator 2|0〉⊗n〈0| − I , where I is the identity operation on the data qubits.
(vi) Perform the n Hadamard transformations on the n data qubits again.

(vii) Repeat steps 3 → 6 with a finite number of times, then measure the n data qubits.

The number of repetitions [9] for obtaining a finite item is R = CI
( arccos

√
1/N

2arccos
√

N−1/N

)
, which is

bounded above by π
√

N/4.
On the other hand, in the realm of atom, cavity QED techniques, where atoms interact with

a quantized electromagnetic field, have been proved to be a promising candidate for realizing
the quantum processors. Recently, many schemes of quantum algorithms have been proposed
based on cavity QED techniques. For example, Rauschenbeutel et al [10] have realized a two-
qubit phase gate experimentally with resonant interaction of a two-level atom with a cavity
mode and Zheng [11] has realized a two-qubit controlled-phase gate with resonant interaction
of two three-level atoms with a cavity mode. The Deutsh–Jozsa (D–J) logarithm [12] and the
Grover search algorithm [13, 14] have been realized in cavity QED, and so on.

In this paper, we first mainly propose a simple scheme for implementing the Grover
search algorithm in cavity QED. Comparing [13, 14], they are both based on non-resonant
interactions, our scheme is based on single resonant interactions between atoms and cavity and
does not use the cavity mode as the data bus. Thus the current scheme is very simple and the
interaction time is very short, which is important in view of decoherence. More importantly,
we strictly investigate the case of atomic spontaneous emission and cavity decay during the
interactions. Then we avoid the effect by constructing appropriate unitary transformations.
Therefore our proposal is more approach to real case and can succeed with higher fidelity
(over 0.99). Here, we only discuss the case of two data qubits, where we can search a finite
item from four items. The circuit diagram of the Grover search with two data qubits and one
auxiliary working qubit is shown in figure 2. Three-level atoms are used in this paper and
the relevant level structure is shown in figure 3. The third level |i〉 is not affected during the
atom–cavity resonant interaction. Thus we consider the case that two atoms interact with the
single cavity mode, in the interaction picture, the Hamiltonian of the atom–cavity interaction
can be expressed as (assuming h̄ = 1) [11]

H = g1
(
a†S−

1 + aS+
1

)
+ g2

(
a†S−

2 + aS+
2

)
, (1)

where g1 and g2 are the coupling strengths of the atoms 1, 2 with the cavity, respectively.
s+ = |e〉〈g|, s− = |g〉〈e| and |g〉 is the ground state of the atoms, |e〉 is the excited state
of the atoms. a†, a are the creation and annihilation operators of the cavity mode. Assume
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Figure 2. The circuit diagram for the two-data-qubit Grover search algorithm. H denotes Hadamard
transformation. |φ〉1 and |φ〉2 are two data qubits, |e〉3 is an auxiliary working qubit.

g

i

e

g

Figure 3. The level structure of the atoms. |g〉 is the ground state, |e〉 is the excited state. The
cavity mode is resonantly coupled to the |e〉 ↔ |g〉 transition. The third level |i〉 is not affected by
the interaction.

that the cavity mode is initially prepared in the vacuum state |0〉c. In order to implement the
two-data-qubit Grover search algorithm, firstly, we prepare atoms 1, 2 and 3 in the state

|φ〉123 = |gge〉123 (2)

and send atoms 1 and 3 through a classical field and choose appropriately phase and amplitude,
respectively

|g〉1 → 1√
2
(|g〉1 + |e〉1), (3a)

|e〉3 → 1√
2
(|g〉3 − |e〉3). (3b)

Then we send atom 2 through two classical fields and choose appropriately phases and
amplitudes

|g〉2 → 1√
2
(|g〉2 + |e〉2) → 1√

2
(|g〉2 + |i〉2). (4)

So the total state of the atoms 1, 2 and 3 becomes

|φ〉123 = 1
2
√

2
(|gg〉12 + |gi〉12 + |eg〉12 + |ei〉2)(|g〉3 − |e〉3). (5)

Obviously, we know that the four items (|gg〉12, |gi〉12, |eg〉12, |ei〉2) are stored in the data
qubits before applying the oracle. Without loss of generality, we search the state |eg〉12 from
the four states. However, for the two-data-qubit Grover search algorithm, the oracle has effect
on the states to be searched. The auxiliary working qubit can be discarded at this point.
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Secondly, we send atoms 1 and 2 through the vacuum cavity, the evolutions are governed
by the Hamiltonian of equation (1),

|eg〉12|0〉c → g1

E

{
1

E

(
g1 cos(Et) +

g2
2

g1

)
|eg〉12|0〉c

+
1

E
g2[cos(Et) − 1]|ge〉12|0〉c − i sin(Et)|gg〉12|1〉c

}
, (6a)

|ei〉12|0〉c → [cos(g1t)|e〉1|0〉c − i sin(g1t)|g〉1|1〉c]|i〉2, (6b)

|gg〉12|0〉c → |gg〉12|0〉c, (6c)

|gi〉12|0〉c → |gi〉12|0〉c, (6d)

where E =
√

g2
1 + g2

2. If we choose

t = π

g1
, g2 =

√
3g1, (7)

which can be achieved by choosing coupling strengths and interaction time appropriately.
Thus, we have

|eg〉12|0〉c → |eg〉12|0〉c, (8a)

|ei〉12|0〉c → −|ei〉12|0〉c, (8b)

|gg〉12|0〉c → |gg〉12|0〉c, (8c)

|gi〉12|0〉c → |gi〉12|0〉c. (8d)

Then send atom 2 through two classical fields tuned to the transition

|i〉2 → |e〉2, |g〉2 ←→ |e〉2. (9)

These lead the state of atoms 1 and 2 to

|φ〉12 = 1
2 (|gg〉12 + |ge〉12 − |eg〉12 + |ee〉12). (10)

Thirdly, we send atoms 1 and 2 through a classical field, respectively. Choosing
appropriately phase and amplitude, let

|g〉i → 1√
2
(|g〉i + |e〉i ), (i = 1, 2) (11a)

|e〉i → 1√
2
(|g〉i − |e〉i ), (i = 1, 2). (11b)

Then we perform a single-qubit operation on atom 2 again

|e〉2 → |i〉2. (12)

Thus equation (10) becomes

|φ〉12 = 1
2 (|gg〉12 + |eg〉12 − |gi〉12 + |ei〉12). (13)

In order to achieve the next step (phase transformation), we can perform single-qubit
operations and controlled-phase transformations on the two atoms as in equation (8), which
can lead equation (13) to

|φ〉12 = 1
2 (|gg〉12 + |ge〉12 − |eg〉12 − |ee〉12). (14)
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Finally, we perform single-qubit operations on atoms 1 and 2 as in equation (11). Thus
we obtain the state of atoms 1 and 2

|φ〉12 = |eg〉12. (15)

We can measure the state of atoms 1 and 2 by detectors. Obviously, the state of atoms 1 and 2
is the result that we want to search. If we want to search other states (|gg〉12, |gi〉12 or |ei〉12),
the main process is the same as above (equations (8) and (11)), except for some single-qubit
operations.

But in the real processing of resonant interactions, the cavity decay and the atomic
spontaneous emission are unavoidable. Taking them into consideration, if we choose
appropriate parameters g2 = √

3g1, t = π
g1

and κ = τ = 0.1g1, where κ is the cavity
decay rate and τ is the atomic spontaneous emission rate, the evolution [11] of system is
similar to equation (8). While 10−π/20 is added to the |eg〉12 and −|ei〉12 compared with the
ideal case. The state of equation (14) becomes

|φ〉12 = 1√
1 + 2 × 10− π

10 + 10− π
5

(|gg〉12 − 10− π
20 |ge〉12 + 10− π

20 |eg〉12 − 10− π
10 |ee〉12). (16)

Then we perform the single-qubit operations

|g〉1 → 1√
1 + 10−π/10

(10−π/20|g〉1 + |e〉1), (17a)

|e〉1 → 1√
1 + 10−π/10

(|g〉1 − 10−π/20|e〉1), (17b)

and

|g〉2 → 1√
1 + 10−π/10

(|g〉2 + 10−π/20|e〉2), (18a)

|e〉2 → 1√
1 + 10−π/10

(10−π/20|g〉2 − |e〉2), (18b)

on atoms 1 and 2, respectively. These lead the state of atoms 1 and 2 to |eg〉12, i.e., we can
search the state perfectly (the successful possibility and fidelity are both equal to 1.0).

Out of question, the D–J algorithm can also be implemented with resonant interactions.
The D–J algorithm can distinguish the function f (x) between constant and balanced [2].
The values of the function f (x) are either 0 or 1 for all possible inputs. The values of balance
function are equal to 1 for half of all the possible inputs, and 0 for the other half. The
constant is always 1 or 0 for all inputs. Classically, if we want to unambiguously distinguish
between constant and balanced function on 2n inputs, we will need 2n/2 + 1 queries to achieve
the task. While for the D–J algorithm, we will need only one query. Here we discuss the
two-qubit D–J algorithm. The state of query and auxiliary working qubit is prepared in
(|0〉i + |1〉i )(|0〉a − |1〉a)/2. After mapping a unitary transformation Uf on the system, the
initial state becomes [(−1)f (0)|0〉i + (−1)f (1)|1〉i](|0〉a − |1〉a)/2. There are four possible
transformations to the Uf : (1) for Uf 1, f (0) = f (1) = 0; (2) for Uf 2, f (0) = f (1) = 1;
(3) for Uf 3, f (0) = 0 and f (1) = 1; (4) for Uf 4, f (0) = 1 and f (1) = 0. After a
Hadamard transformation on the query qubit, the state of query qubit becomes |f (0)⊕ f (1)〉.
If the function f (x) is constant, the state of query qubit becomes |0〉i . Otherwise it
becomes |1〉i .
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Obviously implementation of the unitary transformation Uf is the key. We prepare two
atoms in

|ϕ〉12 = (|g〉1 + |e〉1)(|g〉2 − |e〉2)/2. (19)

In the case of Uf 1, we take no operation on the two atoms.
In the case of Uf 2, we perform a single-qubit rotation on atom 2,

|g〉2 ←→ |e〉2. (20)

In the case of Uf 3, we first perform a single-qubit rotation on atom 2,

|e〉2 ←→ |i〉2. (21)

Secondly we send atoms 1 and 2 through a vacuum cavity. We can obtain the evolution of
equation (8), which is governed by the Hamiltonian of equation (1). Thirdly we perform single-
qubit rotation on atom 2 of equation (21) and another single-qubit rotation of equation (20).
Then we send atoms 1 and 2 through the vacuum cavity again as equation (8). Finally, we
perform single-qubit rotation on atom 2 of equation (21).

In the case of Uf 4, we can achieve the task by the process of the case of Uf 3 and a
single-qubit operation on atom 2.

Now, we have completed the unitary Uf . Thus the two-qubit D–J algorithm will be
implemented simply. Moreover, the scheme can be generalized to multi-qubit case.

For the real processing (with cavity decay and the atomic spontaneous emission), we
can also achieve the task with successful possibility and fidelity being both 1.0 by choosing
appropriate single-qubit operations for the implementation of Grover search algorithm. This
is not only a useful character in experimental manipulation but also important for constructing
real quantum computer.

Discussion on the feasibility of the current scheme is necessary. The scheme requires
two atoms in a vacuum cavity having different coupling strengths with the cavity mode. The
coupling depends on the atomic positions: g = � e−r2/ω2

, where � is the coupling strength
at the cavity centre, ω is the waist of the cavity mode, and r is the distance between the
atom and the cavity centre [15]. The condition g2 = √

3g1 in our scheme can be satisfied
by locating one atom at the centre of the cavity and locating the other one at the position
r = ωln1/2

√
3. According to the recent experiments with Cs atoms trapped in an optical

cavity [16], the condition can be obtained. For the resonant cavity, in order to implement
quantum algorithms successfully, the relationship between the interaction time and the excited
atom lifetime should be taken into consideration. The interaction time should be much shorter
than that of atom radiation. Hence, atom with a sufficiently long excited lifetime should be
chosen. For Rydberg atoms with principal quantum numbers 50 and 51, the radiative time is
T1 
 3 × 10−2 s. From the analysis in [17], the interaction time is on the order T 
 2 ×
10−4 s, which is much shorter than the atomic radiative time. So the condition can be
satisfied by choosing Rydberg atoms. Furthermore our scheme requires that two atoms be
simultaneously sent through a cavity, otherwise there will be an error. Assume that during
the interaction between the two atoms and the cavity, one atom enters the cavity 0.01t sooner
than another atom, with t being the time of each atom staying in the cavity. We can obtain the
fidelity F 
 0.999 for equation (10) and the total fidelity is about 0.998 for the two data qubits
Grover algorithm. Obviously in this case the operation is only slightly affected in current
schemes.

Next, one needs to reach the Lamb–Dicke regime in order to implement the quantum
algorithms. For the state of equation (5), in the Lamb–Dicke regime, the infidelity caused by
the spatial extension of the atomic wavefunction is about � 
 (ka)2π , where k is the wave
vector of the cavity mode and a is the spread of the atomic wavefunction. Setting � 
 0.01,
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so we have a 
 0.01λ, where λ is the wavelength of the cavity mode. If the atom trajectories
cross the cavity with the deviation of less than 0.1 degree from its pre-determined direction,
we can ensure the fidelity is about 0.999 for equation (10) and the unitary transformation Uf .
While in order to maintain g2 = √

3g1 in the process of atomic motion in the cavity, we can
choose the parameter of cavity z � 0.5z0, where z0 = πω2

λ
and 2z is the length of the cavity.

We can obtain that the error is only about 10−3. Therefore our scheme is feasible with the
current cavity QED technology.

In conclusion, we have proposed the scheme for implementing the quantum algorithms
in cavity QED. Our scheme only requires resonant interactions between two atoms and
a cavity mode. The interaction time is very short, which is very important in view of
decoherence. Meanwhile, even if we take the cavity decay and atomic spontaneous emission
into consideration, we can still achieve the task perfectly. Moreover, the implementation of
the algorithms would be an important step to scale more complex quantum algorithms and our
scheme would be very important for constructing real quantum computer.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant
No 60678022, the Doctoral Fund of Ministry of Education of China under Grant No
20060357008, the Key Program of the Education Department of Anhui Province under Grant
Nos: 2006KJ070A, 2006KJ057B and the Talent Foundation of Anhui University.

References

[1] Shor P W 1999 SIAM Rev. 41 303
[2] Deutsch D and Josza R 1992 Proc. R. Soc. London, Ser. A 439 553
[3] Grover L K 1997 Phys. Rev. Lett. 79 4709
[4] Grover L K 1998 Phys. Rev. Lett. 80 4329
[5] Chuang I L, Gershenfeld N and Kubinec M 1998 Phys. Rev. Lett. 80 3408
[6] Jones J A, Mosca M and Hansen R H 1998 Nature 393 344
[7] Bhattacharya N, vanLindenvandenHeuvell H B and Spreeuw R J C 2002 Phys. Rev. Lett. 88 137901
[8] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005

Nature 434 169
[9] Boyer M, Brassard G, Ho.yer P and Tapp A 1998 Fortschr. Phys. 46 493

[10] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev.
Lett. 83 5166

[11] Zheng S B 2005 Phys. Rev. A 71 062335
[12] Zheng S B 2004 Phys. Rev. A 70 034301
[13] Yamaguchi F, Milman P, Brune M, Raimond J M and Haroche S 2002 Phys. Rev. A 66 010302
[14] Deng Z J, Feng M and Gao K L 2005 Phys. Rev. A 72 034306
[15] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev.

Lett. 87 037902
[16] Boca A, Miller R, Birnbaum K M, Boozer A D, Mckeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[17] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392

http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1103/PhysRevLett.79.4709
http://dx.doi.org/10.1103/PhysRevLett.80.4329
http://dx.doi.org/10.1103/PhysRevLett.80.3408
http://dx.doi.org/10.1038/30687
http://dx.doi.org/10.1103/PhysRevLett.88.137901
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1103/PhysRevLett.83.5166
http://dx.doi.org/10.1103/PhysRevA.70.034301
http://dx.doi.org/10.1103/PhysRevA.66.010302
http://dx.doi.org/10.1103/PhysRevA.72.034306
http://dx.doi.org/10.1103/PhysRevLett.87.037902
http://dx.doi.org/10.1103/PhysRevLett.93.233603
http://dx.doi.org/10.1103/PhysRevLett.85.2392

	Acknowledgments
	References

